Дача Бойлеры Отопление

Биогеохимические циклы углерода, азота, фосфора. Биологические циклы углерода, кислорода, азота, фосфора Основные биогеохимические циклы углерода азота фосфора воды

Осуществление функций живого вещества связано с миграцией атомов и молекул в процессе круговорота веществ, то есть биогеохимических циклов. В биосфере постоянно идет круговорот воды и всех химических элементов, входящих в состав живых организмов.

Биогеохимический цикл воды (31.4). Вода является самым распространенным химическим соединением в биосфере. Ее совокупные запасы на Земле составляют 1500000000 км3. Водяной пар поступает в атмосферу при испарении с поверхности водоемов, транспирации растений, дыхание и т.д.; в составе воздуха ее перемещает ветер. Из атмосферы вода выпадает в виде дождя или снега. В морях и океанах ее запас пополняется благодаря стокам рек и осадков. Морские течения переносят воду разной температуры на значительные расстояния, влияя на климат определенных участков земной поверхности. Вода вызывает геологические явления вымывания, перенос и отложение веществ. Воду поглощают существа, и она включается в их обмен веществ. Организмы выделяют воду с отходами жизнедеятельности, во время дыхания, испарения и тому подобное.

Биогеохимический цикл кислорода. Поглощая молекулярный кислород (02) во время дыхания, живые существа обеспечивают свои энергетические потребности. Атмосферное и растворенный в воде кислород способны окиснюваты органические остатки, а также неорганические соединения оболочек Земли. Часть атмосферного кислорода под действием ультрафиолетовых солнечных лучей и электрических разрядов превращается в озон (03). Содержание кислорода в нижних слоях атмосферы составляет около 21% и снижается с увеличением высоты.

Биогеохимический цикл углерода (31.5). Карбон входит в всех органических соединений — основы состава и биохимических процессов живых организмов. Автотрофы фиксирующие углекислый газ (С02) и синтезировать различные органические соединения, используя для этого световую энергию (фототрофы) или энергию химических реакций (хемотрофы). Эти вещества в дальнейшем по цепям питания попадают в гетеротрофов. Карбон в живых организмах существует в виде органических соединений и карбонатов, а вне их — в органических веществах почвы, углекислом газе и различных осадочных породах (мраморе, известняка, мела и т.д.). На время Карбон, который содержится в этих соединениях, изымается из биохимических циклов, но впоследствии, в результате жизнедеятельности живых организмов (дыхание, выделение и т.д.), биогенного расписания мертвой органики (например, процессы минерализации, брожение), химических превращений осадочных пород (выветривания, растворения), он снова привлекается к биогеохимических процессов.

Биогеохимический цикл азота. Содержание свободного газообразного азота (N2) в атмосфере составляет около 79%. Из атмосферы некоторое его количество поступает в воду и почву преимущественно в виде азота (II) оксида (N02) и аммиака (NH3), которые образуются под воздействием космических лучей, грозовых разрядов и др. Основная часть соединений азота попадает в почву и воду благодаря фиксации атмосферного азота прокариотами (азотфиксирующие бактерии, некоторые цианобактерии и т.д.). Азот в составе химических веществ, которые могут быть усвоены живыми организмами, называется фиксированной. Он может усваиваться непосредственно из почвы зелеными растениями или благодаря мутуалистичному сосуществованию с клубеньковыми азотфиксирующими бактериями. Из соединений азота растения синтезируют аминокислоты, из которых состоят белки, нуклеиновые кислоты и др. Далее азотсодержащих органические соединения передаются по цепям питания. В результате диссимиляции сложные соединения азота в организмах разлагаются до простых (аммиак, мочевина, мочевая кислота, гуанин и т.п.) и попадают наружу при выдохе, с потом, мочой, экскрементами и др. Белки и другие органические соединения азота поступают в окружающую среду с остатками организмов. их раскладывают редуценты, осуществляющих денитрификацию — процесс восстановления нитритов (соли азотистой кислоты HN02) или нитратов (соли азотной кислоты HN03) до молекулярного азота или азота (II) оксида. Другие микроорганизмы обеспечивают реакции нитрификации, благодаря которым ионы аммония (NH4 +) окисляются К нитритов, а нитриты — до нитратов.

Круговорот углерода.

Самый интенсивный биогеохимический цикл – круговорот углерода. В

природе углерод существует в двух основных формах – в карбонатах

(известняках) и углекислом газе. Содержание последнего в 50 раз больше, чем

в атмосфере. Углерод участвует в образовании углеводов, жиров, белков и

нуклеиновых кислот.

Основная масса аккумулирована в карбонатах на дне океана (1016 т), в

кристаллических породах (1016 т), каменном угле и нефти (1016 т) и

участвует в большом цикле круговорота.

Основное звено большого круговорота углерода – взаимосвязь процессов

фотосинтеза и аэробного дыхания (рис. 1).

Другое звено большого цикла круговорота углерода представляет собой

анаэробное дыхание (без доступа кислорода); различные виды анаэробных

бактерий преобразуют органические соединения в метан и другие вещества

(например, в болотных экосистемах, на свалках отходов).

В малом цикле круговорота участвует углерод, содержащийся в

растительных тканях (около 1011 т) и тканях животных (около 109 т).

Круговорот кислорода .

В количественном отношении главной составляющей живой материи является

кислород, круговорот которого осложнён его способностью вступать в

различные химические реакции, главным образом реакции окисления. В

результате возникает множество локальных циклов, происходящих между

атмосферой, гидросферой и литосферой.

(осадочные кальциты, железные руды), имеет биогенное происхождение и должно

рассматриваться как продукт фотосинтеза. Этот процесс противоположен

процессу потребления кислорода при дыхании, который сопровождается

разрушением органических молекул, взаимодействием кислорода с водородом

(отщеплённым от субстрата) и образованием воды. В некотором отношении

круговорот кислорода напоминает обратный круговорот углекислого газа. В

основном он происходит между атмосферой и живыми организмами.

Потребление атмосферного кислорода и его возмещение растениями в

процессе фотосинтеза осуществляется довольно быстро. Расчёты показывают,

что для полного обновления всего атмосферного кислорода требуется около

двух тысяч лет. С другой стороны, для того, чтобы все молекулы воды

гидросферы были подвергнуты фотолизу и вновь синтезированы живыми

организмами, необходимо два миллиона лет. Большая часть кислорода,

вырабатываемого в течение геологических эпох, не оставалась в атмосфере, а

фиксировалась литосферой в виде карбонатов, сульфатов, оксидов железа, и её

масса составляет 5,9*1016 т. Масса кислорода, циркулирующего в биосфере в

виде газа или сульфатов, растворённых в океанических и континентальных

водах, в несколько раз меньше (0,4*1016 т).

Отметим, что, начиная с определённой концентрации, кислород очень

токсичен для клеток и тканей (даже у аэробных организмов). А живой

анаэробный организм не может выдержать (это было доказано ещё в прошлом

веке Л. Пастером) концентрацию кислорода, превышающую атмосферную на 1%.

Круговорот азота

Газообразный азот возникает в результате реакции окисления аммиака,

образующегося при извержении вулканов и разложении биологических отходов:

4NH3 + 3O2 (2N2 + 6H2O.

Круговорот азота – один из самых сложных, но одновременно самых

идеальных круговоротов. Несмотря на то что азот составляет около 80%

атмосферного воздуха, в большинстве случаев он не может быть

непосредственно использован растениями, т.к. они не усваивают газообразный

азот. Вмешательство живых существ в круговорот азота подчинено строгой

иерархии: только определённые категории организмов могут оказывать влияние

на отдельные фазы этого цикла. Газообразный азот непрерывно поступает в

атмосферу в результате работы некоторых бактерий, тогда как другие бактерии

– фиксаторы (вместе с сине-зелёными водорослями) постоянно поглощают его,

преобразуя в нитраты. Неорганическим путём нитраты образуются и в атмосфере

в результате электрических разрядов во время гроз.

Самые активные потребители азота – бактерии на корневой системе

растений семейства бобовых. Каждому виду этих растений присущи свои особые

бактерии, которые превращают азот в нитраты. В процессе биологического

цикла нитрат-ионы (NO3-) и ионы аммония (NH4+), поглощаемы растениями из

почвенной влаги, преобразуются в белки, нуклеиновые кислоты и т.д. Далее

образуются отходы в виде погибших организмов, являющихся объектами

жизнедеятельности других бактерий и грибов, преобразующих их в аммиак. Так

возникает новый цикл круговорота. Существуют организмы, способные

превращать аммиак в нитриты, нитраты и в газообразный азот. Основные звенья

круговорота азота в биосфере представлены схемой на рис. 3.

Биологическая активность организмов дополняется промышленными

способами получения азотосодержащих органических и неорганических веществ,

многие из которых применяются в качестве удобрений для повышения

продуктивности и роста растений.

Антропогенное влияние на круговорот азота определяется следующими

процессами:

1. сжигание топлива приводит к образованию оксида азота, а затем

реакциям:

2. 2NO + O2 (2NO2 ,

3. 4NO2 + 2H2O.+ O2 (4HNO3 ,

4. способствуя выпадению кислотных дождей;

5. в результате воздействия некоторых бактерий на удобрения и отходы

животноводства образуется закись азота – один из компонентов,

создающих парниковый эффект;

6. добыча полезных ископаемых, содержащих нитрат-ионы и ионы аммония,

для производства минеральных удобрений;

7. при сборе урожая из почвы выносятся нитрат-ионы и ионы аммония;

8. стоки с полей, ферм и из канализаций увеличивают количество нитрат-

ионов и ионов аммония в водных экосистемах, что ускоряет рост

водорослей и других растений; при разложении последних расходуется

кислород, что в конечном счёте приводит к гибели рыб.

Круговорот фосфора

Фосфор – один из основных компонентов (главным образом в виде и

) живого вещества и входит в состав нуклеиновых кислот (ДНК и РНК),

клеточных мембран, аденозинтрифосфата (АТФ) и аденозиндифосфата (АДФ),

жиров, костей и зубов. Круговорот фосфора, как и других биогенных

элементов, совершается по большому и малому циклам.

Запасы фосфора, доступные живым существам, полностью сосредоточены в

литосфере. Основные источники неорганического фосфора – изверженные или

осадочные породы. В земной коре содержание фосфора не превышает 1%, что

лимитирует продуктивность экосистем. Из пород земной коры неорганический

фосфор вовлекается в циркуляцию континентальными водами. Он поглощается

растениями, которые при его участии синтезируют различные органические

соединения и таким образом включаются в трофические цепи. Затем

органические фосфаты вместе с трупами, отходами и выделениями живых существ

возвращаются в землю, где снова подвергаются воздействию микроорганизмов и

превращаются в минеральные формы, употребляемые зелёными растениями.

В экосистеме океана фосфор приносится текучими водами, что

способствует развитию фитопланктона и живых организмов.

В наземных системах круговорот фосфора проходит в оптимальных

естественных условиях с минимумом потерь. В океане дело обстоит иначе. Это

связано с постоянным оседанием (седиментацией) органических веществ.

Осевший на небольшой глубине органический фосфор возвращается в круговорот.

Фосфаты, отложенные на больших морских глубинах не участвуют в малом

круговороте. Однако тектонические движения способствуют подъёму осадочных

пород к поверхности.

Таким образом фосфор медленно перемещается из фосфатных месторождений

на суше и мелководных океанических осадков к живым организмам и обратно

Рассматривая круговорот фосфора в масштабе биосферы за сравнительно

короткий период, можно сделать вывод, что он полностью не замкнут. Запасы

фосфора на земле малы. Поэтому считают, что фосфор – основной фактор,

лимитирующий рост первичной продукции биосферы. Полагают даже, что фосфор –

главный регулятор всех других биогеохимических циклов, это – наиболее

слабое звено в жизненной цепи, которая обеспечивает существование человека.

Антропогенное влияние на круговорот фосфора состоит в следующем:

1. добыча больших количеств фосфатных руд для минеральных удобрений и

моющих средств приводит к уменьшению количества фосфора в

биотическом круговороте;

2. стоки с поле, ферм и коммунальные отходы приводят к увеличению

фосфат-ионов в водоёмах, к резкому росту водных растений и

нарушению равновесия в водных экосистемах.

Круговорот серы

Из природных источников сера попадает в атмосферу в виде сероводорода,

диоксида серы и частиц сульфатных солей (рис. 5).

Около одной трети соединений серы и 99% диоксида серы – антропогенного

происхождения. В атмосфере протекают реакции, приводящие к кислотным

2SO2 + O2 (2SO3 ,

SO3 + H2O (H2SO4 .

Круговорот воды

Вода, как и воздух, - основной компонент, необходимый для жизни. В

количественном отношении это самая распространённая неорганическая

составляющая живой материи. Семена растений, в которых содержание воды не

превышает 10%, относятся к формам замедленной жизни. Такое же явление

(ангидробиоз) наблюдается у некоторых видов животных, которые при

неблагоприятных внешних условиях могут терять большую часть воды в своих

Вода в трёх агрегатных состояниях присутствует во всех составных

частях биосферы: атмосфере, гидросфере и литосфере. Если воду, находящуюся

в различных гидрогеологических формах, равномерно распределить по

соответствующим областям земного шара, то образуются слои следующей

толщины: для Мирового океана 2700 м, для ледников 100 м, для подземных вод

15 м, для поверхностных пресных вод 0,4 м, для атмосферной влаги 0,03 м.

Основную роль в циркуляции и биогеохимическом круговороте воды играет

атмосферная влага, несмотря на относительно малую толщину её слоя.

Атмосферная влага распределена по Земле неравномерно, что обуславливает

большие различия в количестве осадков в разных районах биосферы. Среднее

географической широты. Например, на Северном полюсе оно равно 2,5 мм (в

столбе воздуха с поперечным сечением 1 см2), на экваторе - 45 мм.

О механизме гидрогеологического цикла было сказано выше – в разделе

касающемся описания особенностей гидросферы. Вода, выпавшая на сушу, затем

расходуется на просачивание (или инфильтрацию), испарение и сток.

Просачивание особенно важно для наземных экосистем, так как способствует

снабжению почвы водой. В процессе инфильтрации вода поступает в водоносные

горизонты и подземные реки. Испарение с поверхности почвы также играет

важную роль в водном режиме местности, но более значительное количество

воды выделяют сами растения своей листвой. Причём количество воды,

выделяемое растениями, тем больше, чем лучше они ею снабжаются. Растения,

производящие одну тонну растительной массы, поглощают как минимум 100 т

Главную роль в круговороте воды на континентах играет суммарное

испарение (деревья и почва).

Последняя составляющая круговорота воды на суше – сток. Поверхностный

сток и ресурсы подземных водоносных слоёв обеспечивают питание водных

потоков. Вместе с тем при уменьшении плотности растительного покрова сток

становится основной причиной эрозии почвы.

Как уже отмечалось, вода участвует и в биологическом цикле, являясь

источником кислорода и водорода. Однако фотолиз её при фотосинтезе не

играет существенной роли в процессе круговорота.

Биогеохимические круговороты

В отличие от энергии, которая однажды использованная организмом,

превращается в тепло и теряется для экосистемы, вещества циркулируют в

биосфере, что и называется биогеохимическими круговоротами. Из 90 с лишним

элементов, встречающихся в природе, около 40 нужны живым организмам.

Наиболее важные для них и требующиеся в больших количествах: углерод,

водород, кислород, азот. Кислород поступает в атмосферу в результате

фотосинтеза и расходуется организмами при дыхании. Азот извлекается из

атмосферы благодаря деятельности азотофиксирующих бактерий и возвращается в

неё другими бактериями.

Круговороты элементов и веществ осуществляются за счёт

саморегулирующих процессов, в которых участвуют все составные части

экосистем. Эти процессы являются безотходными. В природе нет ничего

бесполезного или вредного, даже от вулканических извержений есть польза,

так как с вулканическими газами в воздух поступают нужные элементы,

например, азот.

Существует закон глобального замыкания биогеохимического круговорота в

биосфере, действующий на всех этапах её развития, как и правило увеличения

замкнутости биогеохимического круговорота в ходе сукцессии. В процессе

эволюции биосферы увеличивается роль биологического компонента в замыкании

биогеохимического круговорота. Ещё большую роль на биогеохимический

круговорот оказывает человек. Но его роль осуществляется в противоположном

направлении. Человек нарушает сложившиеся круговороты веществ, и в этом

проявляется его геологическая сила, разрушительная по отношению к биосфере

на сегодняшний день.

Когда 2 млрд. лет тому назад на Земле появилась жизнь, атмосфера

состояла из вулканических газов. В ней было много углекислого газа и мало

кислорода (если вообще был), и первые организмы были анаэробными. Так как

продукция в среднем превосходила дыхание, за геологическое время в

атмосфере накапливался кислород и уменьшалось содержание углекислого газа.

сжигания больших количеств горючих ископаемых и уменьшения поглотительной

способности «зелёного пояса». Последнее является результатом уменьшения

количества самих зелёных растений, а также связано с тем, что пыль и

загрязняющие частицы в атмосфере отражают поступающие в атмосферу лучи.

В результате антропогенной деятельности степень замкнутости

биогеохимических круговоротов уменьшается. Хотя она довольно высока (для

различных элементов и веществ она не одинакова), но тем не менее не

абсолютна, что и показывает пример возникновения кислородной атмосферы.

Иначе невозможна была бы эволюция (наивысшая степень замкнутости

биогеохимических круговоротов наблюдается в тропических экосистемах –

наиболее древних и консервативных).

Таким образом, следует говорить не об изменении человеком того, что не

должно меняться, а скорее о влиянии человека на скорость и направление

изменений и на расширение их границ, нарушающее правило меры преобразования

природы. Последнее формулируется следующим образом: в ходе эксплуатации

природных систем нельзя превышать некоторые пределы, позволяющие этим

системам сохранять свойства самоподдержания. Нарушение меры как в сторону

увеличения, так и в сторону уменьшения приводит к отрицательным

результатам. Например, избыток вносимых удобрений столь же вреден, сколь и

недостаток. Это чувство меры утеряно современным человеком, считающим, что

в биосфере ему всё позволено.

Надежды на преодоление экологических трудностей связывают, в

частности, с разработкой и введением в эксплуатацию замкнутых

технологических циклов. Создаваемые человеком циклы превращения материалов

считается желательным устраивать так, чтобы они были подобны естественным

циклам круговорота веществ. Тогда одновременно решались бы проблемы

обеспечения человечества невосполнимыми ресурсами и проблема охраны

природной среды от загрязнения, поскольку ныне только 1 – 2% веса природных

ресурсов утилизируется в конечном продукте.

Теоретически замкнутые циклы превращения вещества возможны. Однако

полная и окончательная перестройка индустрии по принципу круговорота

вещества в природе не реальна. Хотя бы временное нарушение замкнутости

технологического цикла практически неизбежно, например, при создании

синтетического материала с новыми, неизвестными природе свойствами. Такое

вещество вначале всесторонне апробируется на практике, и только потом могут

быть разработаны способы его разложения с целью внедрения составных частей

в природные круговороты.


Похожая информация.


Биогеохимические циклы углерода, азота и кислорода (рис. 6.9) наиболее совершенны. Благодаря большим атмосферным резервам, они способны к быстрой саморегуляции. В круговороте углерода , а точнее ¾ наиболее подвижной его формы ¾ CO 2 , четко прослеживается трофическая цепь: продуценты ¾ улавливающие углерод из атмосферы при фотосинтезе, консументы ¾ поглощающие углерод вместе с телами продуцентов и консументов низших порядков, редуцентов ¾ возвращающих углерод вновь в круговорот. Скорость оборота CO 2 составляет порядка 300 лет (полная его замена в атмосфере и других элементов цикла (рис.6.10).

Рис. 6.9. Схема биогеохимического круговорота веществ на суше (по Р. Кашанову, 1984)

Рис. 6.10. Темпы циркуляции веществ (Клауд и Джибор, 1972)

В Мировом океане трофическая цепь: продуценты (фитопланктон) ¾ консументы (зоопланктон, рыбы) ¾ редуценты (микроорганизмы) ¾ осложняется тем, что некоторая часть углерода мертвого организма, опускаясь на дно, «уходит» в осадочные породы и участвует уже не в биологическом, а в геологическом круговороте вещества.

Главным резервуаром биологически связанного углерода являются леса, они содержат до 500 млрд т этого элемента, что составляет 2 / 3 его запаса в атмосфере. Вмешательство человека в круговорот углерода приводит к возрастанию содержания CO 2 в атмосфере.

Скорость круговорота кислорода ¾ 2000 лет (рис. 6.10), именно за это время весь кислород атмосферы проходит через живое вещество. Основной поставщик кислорода на Земле ¾ зеленые растения. Ежегодно они производят на суше 53 × 10 9 т кислорода, а в океанах ¾ 414 × 10 9 т.

Главный потребитель кислорода ¾ животные, почвенные организмы и растения, использующие его в процессе дыхания. Процесс круговорота кислорода в биосфере весьма сложен, так как он содержится в очень многих химических соединениях.

Подсчитано, что на промышленные и бытовые нужды ежегодно расходуется 23% кислорода, который освобождается в процессе фотосинтеза.

Предполагается, что ближайшее время весь продуцированный кислород будет сгорать в топках, а следовательно, необходимо значительное усиление фотосинтеза и другие радикальные меры.

Биогеохимический круговорот азота не менее сложен, чем углерода и кислорода, и охватывает все области биосферы. Поглощение его растениями ограничено, так как они усваивают азот только в форме соединения его с водородом и кислородом. И это при том, что запасы азота в атмосфере неисчерпаемы (78% от ее объема). Редуценты (деструкторы), а конкретно почвенные бактерии, постепенно разлагают белковые вещества отмерших организмов и превращают их в аммонийные соединения, нитраты и нитриты. Часть нитратов попадает в процессе круговорота в подземные воды и загрязняет их.

Опасность заключается также и в том, что азот в виде нитратов и нитритов усваивается растениями и может передаваться по пищевым (трофическим) цепям.

Азот возвращается в атмосферу вновь с выделенными при гниении газами. Роль бактерий в цикле азота такова, что если будет уничтожено только 12 их видов, участвующих в круговороте азота, жизнь на Земле прекратится. Так считают американские ученые.

Биогеохимический круговорот в биосфере помимо кислорода, углерода и азота совершают и многие другие элементы, входящие в состав органических веществ ¾ сера, фосфор, железо и др.

Биогеохимические циклы фосфора и серы, важнейших биогенных элементов, значительно менее совершенны, так как основная их масса содержится в резервном фонде земной коры, в «недоступном» фонде.

Круговорот серы и фосфора ¾ типичный осадочный биогеохимический цикл . Такие циклы легко нарушаются от различного рода воздействий и часть обмениваемого материала выходит из круговорота. Возвратиться опять в круговорот она может лишь в результате геологических процессов или путем извлечения живым веществом биофильных компонентов.

Фосфор содержится в горных породах, образовавшихся в прошлые геологические эпохи. В биогеохимический круговорот (рис. 6.11) он может попасть в случае подъема этих пород из глубины земной коры на поверхность суши, в зону выветривания. Эрозионными процессами он выносится в море в виде широко известного минерала ¾ апатита.

Рис. 6.11. Круговорот фосфора в биосфере (по П. Дювиньо, М. Тангу, 1973; с изменениями)

Общий круговорот фосфора можно разделить на две части ¾ водную и наземную. В водных экосистемах он усваивается фитопланктоном и передается по трофической цепи вплоть до консументов третьего порядка ¾ морских птиц. Их экскременты (гуано) снова попадают в море и вступают в круговорот, либо накапливаются на берегу и смываются в море.

Из отмирающих морских животных, особенно рыб, фосфор снова попадает в море и в круговорот, но часть скелетов рыб достигает больших глубин и заключенный в них фосфор снова попадает в осадочные породы.

В наземных экосистемах фосфор извлекается растениями из почв и далее он распространяется по трофической сети. Возвращается в почву после отмирания животных и растений и с их экскрементами. Теряется фосфор из почв в результате их водной эрозии. Повышенное содержащие фосфора на водных путях его переноса вызывает бурное увеличение биомассы водных растений, «цветение» водоемов и их эвтрофикацию. Большая же часть фосфора уносится в море и там теряется безвозвратно.

Последнее обстоятельство может привести к истощению запасов фосфорсодержащих руд (фосфоритов, апатитов и др.). Следовательно, надо стремиться избежать этих потерь и не ожидать того времени, когда Земля вернет на сушу «потерянные отложения».

Сера также имеет основной резервный фонд в отложениях и почве, но, в отличие от фосфора, имеет резервный фонд и в атмосфере (рис. 6.12). В обменном фонде главная роль принадлежит микроорганизмам. Одни из них ¾ восстановители, другие ¾ окислители.

Рис. 6.12 . Круговорот серы (по Ю. Одуму, 1975):

«Кольцо» в центре схемы иллюстрирует процессы окисления (О) и восстановления (R),
благодаря которым происходит обмен серы между фондом доступного сульфата (SO 4)
и фондом сульфидов железа, находящихся глубоко в почве и в осадках

В горных породах сера встречается в виде сульфидов (FeS 2 и др.), в растворах ¾ в форме иона (SO 4) 2 , в газообразной фазе в виде сероводорода (H 2 S) или сернистого газа (SO 2). В некоторых организмах сера накапливается в чистом виде (S 2) и при их отмирании на дне морей образуются залежи самородной серы.

В морской среде сульфат-ион занимает второе место по содержанию после хлора и является основной доступной формой серы, которая восстанавливается автотрофами и включается в состав аминокислот.

Круговорот серы, хотя ее требуется организмам в небольших количествах, является ключевым в общем процессе продуцирования и разложения (Ю. Одум, 1986). Например, при образовании сульфидов железа, фосфор переходит в растворимую форму, доступную для организмов.

В наземных экосистемах сера возвращается в почву при отмирании растений, захватывается микроорганизмами, которые восстанавливают ее до H 2 S. Другие организмы и воздействие самого кислорода приводят к окислению этих продуктов. Образовавшиеся сульфаты растворяются и поглощаются растениями из поровых растворов почвы ¾ так продолжается круговорот.

Однако круговорот серы, так же как и азота, может быть нарушен вмешательством человека (см. рис. 6.12). Виной тому прежде всего сжигание ископаемого топлива, а особенно угля. Сернистый газ (SO 2 ­) нарушает процессы фотосинтеза и приводит к гибели растительности.

Биогеохимические циклы легко нарушаются человеком. Так, добывая минеральные удобрения, он загрязняет воду и воздушную среду. В воду попадает фосфор, вызывая эвтрофикацию, азотистые высокотоксичные соединения и др. Иными словами, круговорот становится не циклическим, а ациклическим . Охрана природных ресурсов должна быть направлена на то, чтобы ациклические процессы превратить в циклические.

Таким образом, всеобщий гомеостаз биосферы зависит от стабильности биогеохимического круговорота веществ в природе. Но являясь планетарной экосистемой, она состоит из экосистем всех уровней, первоочередное значение для ее гомеостаза имеют целостность ее и устойчивость природных экосистем.

Контрольные вопросы

1. Какое место биосфера занимает среди оболочек Земли и в чем ее коренное отличие от других оболочек?

2. Из чего состоят абиотическая и биотическая части биосферы как глобальной экосистемы?

3. Что понимал В. И. Вернадский под живым веществом планеты?

4. Какие биохимические принципы лежат в основе биогенной миграции?

5. Как осуществляется большой круговорот веществ, в том числе большой круговорот воды, в природе?

6. Какие важнейшие функции живого вещества обеспечиваются посредством малого круговорота веществ в природе?

7. Какова роль резервного и обменного фондов в биогеохимическом круговороте веществ?

8. В чем особенности биогеохимических циклов основных биогенных элементов?

2.07. Биогеохимический цикл азота

БГХ-цикл азота (рис. 2.7.1) сложнее углеродного. Он тоже чрезвычайно важен для живых организмов. Хотя азота в атмосфере больше, чем других газов, его включение в состав живого вещества является намного более сложной задачей, чем фиксация углерода при фотосинтезе. Наиболее доступен для растений азот в форме аммиака и нитратов, но аммиак в больших количествах токсичен, а нитраты - нет. Формы, в которых азот используется в органических соединениях - восстановленные, поэтому ассимиляция аммиака требует меньших перестроек. И та, и другая формы очень легко вымываются из почв, особенно нитраты, потому что в нейтральных и щелочных условиях аммоний связывается с некоторыми глинистыми веществами. При разрушении детрита выделяется восстановленный азот. Мочевина также гидролизуется до аммиака почвенными бактериями. Нитрификация осуществляется такими бактериями, как Nitrosomonas , которые переводят аммоний в нитрит; напротив, такие бактерии, как Nitrobacter , переводят нитриты в нитраты.

Рис. 2.7.1. Глобальный цикл азота

Нитрит - частый промежуточный этап в переходах из восстановленной формы в окисленную и обратно. Избыток нитратов в пище - опасное следствие избыточного азотного удобрения почв. При ассимиляции нитраты восстанавливаются, проходя через стадию токсичных нитритов.

Денитрификация - многоэтапный процесс, проходящий через нитрит и закись азота (N 2 0) к молекулярному азоту. Бактерия Pseudomonas добывает необходимый ей кислород с помощью этого процесса, если в почве кислорода нет! Денитрификация может идти и без участия живых организмов. К азотфиксаторам относятся свободноживущие бактерии Azotobacter (аэроб) и Clostridium (анаэроб), симбионты бобовых бактерии Rhizobium , симбионты многих групп растений (например, ольхи) актиномицеты, цианобактерии Anabaena и Nostoc .

Ферментом, фиксирующим азот, является нитрогеназа. Ее работа требует больших энергетических затрат: около 10 г глюкозы на 1 г фиксированного азота.

Азот может фиксироваться и абиогенным путем (вне связи с организмами). Например, во время удара молнии в ее канале достигается такая температура, что в атмосферном воздухе, через который прошел электрический разряд, происходит окисление молекулярного азота кислородом.

Азот и его соединения играют в жизни биосферы такую же важную и незаменимую роль, как и углерод. Биофильность азота сравнима с биофильностью углерода. Индекс биогенного обогащения почв по отношению к земной коре, а растений по отношению к почвам составляет для азота 1000 и 10000 соответственно (Ковда, 1985).

Основным резервуаром азота в биосфере также является воздушная оболочка. Около 80% всех запасов азота сосредоточено в атмосфере планеты, что связано с направлением биогеохимических потоков соединений азота, образующихся при денитрификации. Основной формой, в которой содержится азот в атмосфере, является молекулярная – N 2 . В качестве несущественной примеси в атмосфере содержатся различные оксидные соединения азота NO x , а также аммиак NH 3 . Последний в условиях земной атмосферы наиболее неустойчив и легко окисляется. В то же время, величина окислительно-восстановительного потенциала в атмосфере недостаточна и для устойчивого существования оксидных форм азота, потому его свободная молекулярная форма и является основной.

Первичный азот в атмосфере, вероятно, появился в результате процессов дегазации верхней мантии и из вулканических выделений. Фотохимические реакции в высоких слоях атмосферы приводят к образованию соединений азота и заметному поступлению их на сушу и в океан с атмосферными осадками (3-8 кг/га аммонийного азота в год и 1,5-6 кг/га нитратного). Этот азот также включается в общий биогеохимический поток растворенных соединений, мигрирующих с водными массами, участвует в почвообразовательных процессах и в формировании биомассы растений.

В отличие от углерода, атмосферный азот не может напрямую использоваться высшими растениями. Поэтому ключевую роль в биологическом круговороте азота играют организмы-фиксаторы. Это микроорганизмы нескольких различных групп, обладающие способностью путём прямой фиксации непосредственно извлекать азот из атмосферы и, в конечном счёте, связывать его в почве. К ним относятся:

· некоторые свободноживущие почвенные бактерии;

· симбионтные клубеньковые бактерии (существующие в симбиозе с бобовыми);

· цианобионты, которые также бывают симбионтами грибов, мхов, папоротников, а иногда и высших растений.

В результате деятельности организмов – фиксаторов азота он связывается в почвах в нитритной форме (соединения на основе NH 3).

Нитритные соединения азота способны мигрировать в водных растворах. При этом они окисляются и преобразуются в нитратные – соли азотной кислоты HNO 3 . В этой форме азотные соединения способны эффективно усваиваться высшими растениями и использоваться для синтеза белковых молекул на основе пептидных связей C-N. Далее, по трофическим цепям, азот попадает в организмы животных. В окружающую среду (в водные растворы и в почву) он возвращается в процессах выделительной деятельности животных или разложения органического вещества.



Возврат свободного азота в атмосферу, как и его извлечение, осуществляется в результате микробиологических процессов. Это звено круговорота функционирует благодаря деятельности почвенных бактерий-денитрификаторов, вновь переводящих азот в молекулярную форму.

В литосфере, в составе осадочных отложений, связывается весьма небольшая часть азота. Причина этого в том, что минеральные соединения азота, в отличие от карбонатов, очень хорошо растворимы. Выпадение некоторой доли азота из биологического круговорота также компенсируется вулканическими процессами. Благодаря вулканической деятельности в атмосферу поступают различные газообразные соединения азота, который в условиях географической оболочки Земли неизбежно переходит в свободную молекулярную форму.

Таким образом, основными специфическими чертами круговорота азота в биосфере можно считать следующие:

· преимущественную концентрацию в атмосфере, играющей исключительную роль резервуара, из которой живые организмы черпают запасы необходимого им азота;

· ведущую роль в круговороте азота почв и, в особенности, почвенных микроорганизмов, деятельность которых обеспечивает переход азота в биосфере из одних форм в другие (рис. 3.5.3).

Рис. 3.5.3. Схема биогеохимического цикла азота

Поэтому огромное количество азота в связанном виде содержит биосфера: в органическом веществе почвенного покрова (1,5х10 11 т), в биомассе растений (1,1х10 9 т), в биомассе животных (6,1х10 7 т). В больших количествах азот содержится и в некоторых биогенных ископаемых (селитры).



В то же время наблюдается парадокс – при огромном содержании азота в атмосфере вследствие чрезвычайно высокой растворимости солей азотной кислоты и солей аммония, азота в почве мало и почти всегда недостаточно для питания растений. Поэтому потребность культурных растений в азотных удобрениях всегда высока. Поэтому ежегодно в почву вносится по разным оценкам от 30 до 35 млн. тонн азота в виде минеральных удобрений. Таким образом, поступление за счет азотных удобрений составляет 30% от общих поступлений азота на сушу и в океан. Это часто приводит к существенному загрязнению окружающей среды и тяжелым заболеваниям человека и животных. Особенно велики потери нитратных форм азота, так как он не сорбируется почвой, легко вымывается природными водами, восстанавливается в газообразные формы и до 20-40% его теряется для питания растений. Существенным нарушением цикла азота является и все возрастающее количество отходов животноводства, промышленных отходов и стоков больших городов, поступление в атмосферу аммония и оксидов азота при сжигании угля, нефти, мазута и т.д. Опасно проникновение оксидов азота в стратосферу (выхлопы сверхзвуковых самолетов, ракет, ядерные взрывы), так как это может быть причиной разрушения озонового слоя. Все это, естественно, сказывается на биогеохимическом цикле азота.